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Figure 1: (A) a scene depicting a typical interaction with a synthesizer in which a musician has to manage hundreds of low-level
parameters to get a desirable sound. (B) A contrasting interaction in which the musician uses SynthScribe to express their
desires at a much higher level. This is achieved by using multimodal deep learning in the backend to help a user communicate
their desires to a synthesizer, leading to a much better result.

ABSTRACT
Synthesizers are powerful tools that allow musicians to create dy-
namic and original sounds. Existing commercial interfaces for syn-
thesizers typically require musicians to interact with complex low-
level parameters or to manage large libraries of premade sounds. To
address these challenges, we implement SynthScribe — a fullstack
system that uses multimodal deep learning to let users express their
intentions at a much higher level. We implement features which ad-
dress a number of difficulties, namely 1) searching through existing
sounds, 2) creating completely new sounds, 3) making meaningful
modifications to a given sound. This is achieved with three main fea-
tures: a multimodal search engine for a large library of synthesizer
sounds; a user centered genetic algorithm by which completely new
sounds can be created and selected given the users preferences; a
sound editing support feature which highlights and gives examples
for key control parameters with respect to a text or audio based
query. The results of our user studies show SynthScribe is capable
of reliably retrieving and modifying sounds while also affording the
ability to create completely new sounds that expand a musicians
creative horizon.
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1 INTRODUCTION
Synthesizers enable musicians to create rich and complex timbres
— unique sounds that can be played on a keyboard or through
other digital interfaces that allow composers to expand their tim-
bral vocabulary beyond a typical set of instruments (e.g. guitars,
violin, timpani, etc.). To use a synthesizer, musicians must learn to
manage hundreds of control parameters that modify the various
aspects of a sound (Fig. 1A). Many musicians typically rely on large
banks of preset sounds which are designed by skilled engineers
and packaged with a synthesizer as starting points for musicians.
Allegedly, 9 out of 10 Yamaha DX7s (a popular synthesizer) that
are brought in for servicing are returned with their default presets
still intact, suggesting that default sounds are heavily relied on and
that many musicians rarely succeed in creating unique sounds of
their own [32]. This may partly be due to the high dimensionality
of synthesizer controls and their non-intuitive naming conventions.
Synthesis parameters are often named after quantifiable aspects of
sounds which are disconnected from typical experiential descrip-
tions of sounds [32].

Music technology companies and researchers have developed
commercial tools and experimental systems that help users man-
age preset sounds and low-level synthesis parameters. Analog Lab
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V by Arturia 1 provides a bank of 5840 preset sounds which are
labelled with various semantic attributes which can be accessed by
the user via their keyword search engine. Music technology compa-
nies may also design macrocontrols for their synthesizers — more
intuitive controls which combine multiple control parameters into
one. However, presets are often reused by multiple musicians which
diminishes originality and macrocontrols are not customizable and
limit the expressivity of the synthesizer as they project the set of
possible sounds into a more limited, lower dimensional space. In
response to this, machine learning and intelligent interface research
has attempted to automatically create customizable and intuitive
macrocontrols through active learning or by using latent represen-
tations of synthesizer sounds to craft macrocontrols [10, 11, 15].
Researchers have also developed sound matching algorithms that
would let users find the synthesis parameters that best replicate
any piece of recorded audio [14, 22, 25].

However, these prior techniques either require users to labori-
ously label sounds or for a new model to be trained per synthesizer.
Other techniques like sound matching rely on the user to supply
examples of desirable sounds, limiting the user to sounds that exist
in prior music or in their environment. In this work, we combine
several features in a novel system that can help users search for,
modify, and create completely new synthesizer sounds by using text
and audio concurrently as an intuitive control modality without
training a new model or requiring user annotations.

To this end, we present SynthScribe (Fig. 1B) — a full stack sys-
tem that leverages multimodal deep learning to help musicians
work with an existing synthesizer. Guided by our formative inter-
views with musicians, we implement three features which leverage
LAION-CLAP — a multimodal deep learning model pretrained on
music and general audio. We first implement a multimodal search
that allows users to navigate through a bank of synthesizer sounds
using either text or existing synthesizer sounds. We also create a
user-centered genetic algorithm where hundreds of new synthe-
sizer sounds can be created by mixing together a list of a musician’s
favourite presets; these new sounds are then recorded and embed-
ded with LAION-CLAP on the fly, allowing users to rapidly discover
completely new soundscapes through the multimodal search fea-
ture. Once a user has found a sound that nearly meets their desires,
they can make meaningful edits to it using the preset modification
feature which highlights important groups of parameters with re-
spect to a text or audio query and provides examples of how to
modify those parameters to achieve a desired effect.

To evaluate this approach, we performed two user studies. In
the first study, we evaluate the ability of LAION-CLAP to search
through synthesizer sounds and our preset modification feature’s
effectivness at providing meaningful modifications. The results of
this study showed that LAION-CLAP provides a reliable foundation
for our search feature and that our preset modification feature is
capable of making meaningful modifications to a sound. In the
second study, we complete a series of free usage observations and
find evidence that our system can be used to save time for both
professional and amateur musicians alike in addition to helping

1Arturia’s Analog Lab V: https://www.arturia.com/products/software-instruments/
analoglab-v/overview

musicians find pleasant yet surprising sounds that inspire creativity
through our genetic mixing feature.

In summary, we make the following contributions:

• A novel system, SynthScribe, that enables the use of text
and audio for the intuitive control of a synthesizer.

• The results of a user study evaluating our systems ability
to retrieve and modify existing synthesizer sounds.

• The results of free usage observations with musicians show-
ing how musicians of various skill levels interact with
SynthScribe.

2 RELATEDWORK
2.1 Multimodal Deep Learning
Multimodal deep learning aims to establish relationships between
modalities of data that arise concurrently. In recent years, con-
trastive learning approaches have proven to be useful in creating
joint representations of data modalities that can be used for multi-
modal search or generative tasks. In the image domain, CLIP [28]
has been used as an engine for multimodal search [2] or as a key
component in generative models like DALL-E 2 [29] and Stable Dif-
fusion [30]. In audio, there is a breadth of research on deep learning
models like LAION-CLAP [35] that create joint representations of
text and audio, often with a focus on music [16, 24]. Some pre-
liminary work has created similar representations specifically for
musical timbres and text [17]. These models are potentially useful
for musicians but must be embedded into a well designed system if
they are to be integrated into a musicians workflow. In this work,
we bridge this gap by experimenting with several novel features
by recording and embedding synthesizer sounds using LAION-
CLAP [35]. By leveraging the ability to connect text and audio, we
can help musicians explore existing sounds and create thousands of
new ones while also helping them meaningfully modify any sound.

2.2 Assisted Sound Synthesis
A significant body of research in music technology has been de-
voted to facilitating sound synthesis by experimenting with novel
interface design and/or the application of existingmachine-learning
techniques. In interface design, researchers have focused on design-
ing expressive methods of control for synthesizers by representing
the parameter space in touch-based interfaces [31, 34] or by allow-
ing for direct manipulation by representing waveforms in a pin-
based shape-shifting display or by letting users sketch the shapes
of sound waves [7, 27]. Early work in machine learning focused on
the application of evolutionary algorithms to optimize synthesizer
parameters to match a given sound [14, 22]. Sound matching has
also recently been attempted via deep learning through the use of
differentiable digital signal processing [25]. Other developments
have focused on creating intuitive macrocontrols via active learn-
ing of semantic qualities of synthesizer sounds [15] or by training
latent representations of synthesis parameters using normalizing
flows which capture high-level perceptual relationships between
sounds [10, 11]. We build on these techniques by providing musi-
cians with an intuitive control modality for synthesizers without
requiring a new model to be trained or the laborious collection of

https://www.arturia.com/products/software-instruments/analoglab-v/overview
https://www.arturia.com/products/software-instruments/analoglab-v/overview
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user annotations. We achieve this in SynthScribe by implement-
ing several novel features on top of an existing multimodal deep
learning model to facilitate the use of synthesizers.

2.3 HCI and Parameter Exploration Problems
There is a significant breadth of work in HCI which has focused on
strategies for exploring design spaces that are governed by control
parameters. Geppetto [8], for example, implemented a systemwhich
helped users generate expressive movements in robots by using a
data driven approach to connect complex control parameters with
desired semantic behaviours. An earlier work, Attribit [6], allowed
users to create visual content associated with a given semantic
attribute, abstracting the design process away from parameters.
Other work has focused on implementing intuitive control spaces
for image editing and 3D design [20, 21, 26, 36], animation [18],
or the appearance of material textures [33]. In another vein, BO
as Assistant [19] retools Bayesian Optimization (BO) to let design-
ers freely explore a parameter space while calculating promising
regions for exploration on the fly. Other works have used BO to
help users manage control parameters in animation [4]. Like the
tasks these approaches were designed for, sound synthesis requires
users to optimize a set of control parameters to match their cre-
ative intention. With SynthScribe, we facilitate interaction with
low level control parameters by using multimodal deep learning
as a foundation for searching through sounds and for providing
examples of parameter adjustments that achieve a desired effect.

3 FORMATIVE INTERVIEWS
To understand current practices and identify key difficulties expe-
rienced by synthesizer users, we interviewed eight working musi-
cians who use synthesizers to enhance their creative practice. The
interviews were conducted via half-hour-long video conference
calls, and the participants were compensated with 20 CAD. The mu-
sicians had diverse backgrounds with some using their expertise to
create music for films or podcasts and others who collaborate with
other musicians as producers. Although all were workingmusicians,
each had varying comfort levels when working with synthesizers.
In total, we interviewed three musicians who described themselves
as experts in sound synthesis (P1, P2, P3), three intermediates (P5,
P7, P8), and two novices (P4, P6). Each musician was asked ques-
tions about their current strategies and also their approach when
they first started using synthesizers.

3.0.1 The Trouble of Finding the Right Sound. All participants dis-
cuss their varying reliance on preset sounds and their strategies for
finding a fitting preset. Novices typically rely on presets due to the
overwhelming nature of synthesizer parameters. P1 describes their
first experience with a synthesizer interface as "sensory overload"
while P4 explains that "earlier on, I’d be way too intimidated to
touch things." Jargon also contributes to these difficulties. P2 com-
ments while showing a synthesizer interface using screen share
that "there are just so many words here that I just didn’t understand
going into it until I really studied synthesis." Musicians that are
skilled with synthesizers tend to use preset sounds when they are
under time pressure. P1 describes how they will use presets when
submitting a score for a project that has a short time horizon.

To search through presets, some participants like P1 mention
using software packages like Arturia’s Analog Lab V which contain
rich natural language labels for their 5840 presets which are uti-
lized by a keyword search feature. These text labels are not always
available for all synthesizers as other participants (P3, P4, P7, P8)
mention taking a brute force approach and scrolling through large
lists of presets to find one that fits with a musical context. Often
large banks of preset sounds are organized into folders which per-
tain to certain types of synthesizer sounds (Leads, Pads, Bass, etc.).
Beyond that, presets are named but as P1 notes these names are
"hit or miss". Other participants (P3, P5, P8) express a similar senti-
ment with P6 and P7 stating that they largely ignore preset names
before they have listened to their sound. P1, P2, and P8 explain that
specific names that reference a recognizable synthesizer sound can
be useful. For example, P1 describes a preset named "Beat It" which
they describe as an instantly recognizable sound to people familiar
with that Michael Jackson song.

3.0.2 The Trouble of Modifying Sounds. Presets are not always
satisfactory, however, and often need to be modified to be useful.
P4 notes that presets "sound good in isolation and usually don’t
sound good within the context of the work". All other participants
express similar sentiments, emphasizing that they prefer to modify
preset sounds or design a completely new sound from scratch when
given the time. Other participants (P1, P2, P6, P7, P8) describe how
part of their collaboration with other musicians or stakeholders
involves receiving feedback and incorporating feedback on synthe-
sizer sounds. For example, P1 describes a situation in which they
were requested by a singer to make the synthesizer playing the
harmony to sound "more dreamy".

To modify a sound as a novice, some participants (P3, P5, P7) re-
lied on random exploration of synthesizer parameters while others
like P4 and P6 would opt to just use presets due to being intimidated
by synthesizer interfaces. As professionals, the ability to modify
sounds comes with a detailed understanding of the parameters that
allows them to comprehend the relationship between synthesis
parameters and human perception. To develop this skill, a useful
app mentioned by three participants (P2, P3, P6) is Syntorial 2, a
tool that helps musicians bring the timbres they hear in their head
to life. This tool breaks synthesizers down into their fundamental
components — groups of parameters which affect specific aspects of
a sound — and then uses gamification to train musicians to connect
those parameters with what they hear. Although useful, Syntorial
is a learning tool and does not provide features that immediately
facilitate the use of synthesizers

3.0.3 The Importance of Originality. Many participants (P1, P3, P4,
P7) express the importance of originality in their artistic pursuits.
P7 uses synthesizers because they remove limitations on their music
noting that "if you get an acoustic guitar, you’re kind of limited to
how many genres or styles that you can make because you have the
same timbre of an acoustic guitar." P1 mentions that in film music
"people are always trying to find the next new thing, and find new
unique sounds". Conversely, P3 and P4 describe that synthesizer
music is not noteworthy without a unique artistic signature. P3
describes music that was demoed in their classes, explaining that

2Syntorial: https://www.syntorial.com/

https://www.syntorial.com/
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it began to sound redundant when the same presets are used by
multiple students saying that "everyone’s demo reels sound the
same to a certain point. It’s like, I know that preset." P4 emphasizes
the importance of incorporating their own synthesizer sounds in the
music they produce, expressing that "if you become too generic of a
producer, then you don’t have your own voice". These experiences
point to the value that musicians place on finding unique sounds as
it is a part of their strategy for cultivating a distinct artistic identity.

4 DESIGN GOALS
Using our formative interviews as an inspiration, we developed
three goals to guide the design and development of SynthScribe to
facilitate the use of synthesizers.

D1. Assisting Users in Finding Preset Sounds. Participants
mention having access to large preset libraries without a way to
meaningfully search through presets. Since presets provide a useful
foundation for many musicians, we intend to design a system that
can search through presets irrespective of whether those presets
come with rich text labels.

D2. Supporting Preset Modification. SynthScribe should also
enhance a musicians ability to meaningfully change preset sounds,
enabling users to adapt a synth sound to their needs or to rapidly
incorporate feedback from other stakeholders.

D3. Helping Users Go Beyond Preset Sounds. SynthScribe
should also enable users to create new sounds that go beyond
presets, driving even novice users towards originality.

5 SYNTHSCRIBE
SynthScribe builds several features on top of the Diva Synthesizer
by U-He 3 which creates a workflow displayed in Fig. 2. First, musi-
cians can use a flexible multimodal search where they can use text
or other presets to search through a bank of 3529 preset sounds.
Users can expand this list of presets by choosing to randomly mix
the parameters of a group of selected presets via the Genetic Mixing
feature. This will create a new generation of synthesizer sounds
that can be queried with the same multimodal search. Next, users
can modify any synthesizer sound by using the Preset Modifica-
tion feature. This feature lets users execute a parameter search
highlighting which groups of parameters are important with re-
spect to a text query that describes a desired effect and can make
changes to their initial sounds by providing ten example changes
per parameter group. At any time users can see a list of parameters
or the default Diva interface. When using the preset modification
feature, the parameter list can be set to show only parameters that
have been changed with respect to a user’s starting sound. This lets
them narrow the control space to only crucial parameters when
they discover a change moving toward their desired effect.

5.1 Multimodal Search
With SynthScribe, users can use a flexible natural language query
or the existing synthesizer sounds to search through presets (Fig. 3).
This method is inherently agile, allowing users to rely on the first
timbral descriptors that they think of and then refine their search

3Diva Synthesizer by U-He: https://u-he.com/products/diva/

by selecting a synthesizer sound that most closely matches their
intentions. Our approach returns the results as a list of presets that
automatically configure the parameters of the synthesizer when
clicked. Users can search through the current preset bank using text
by typing a query into the text box and clicking "Search Presets". In
general, we recommend that users type queries using the form "the
sound of a ..." due to the training data of the deep learning model
in the backend 4. Users can then refine this query by clicking on
a preset in the list and clicking "Audio Search". The audio search
feature will return presets which are closest to the current selected
preset (the given preset will appear at the top of the list and the list
of presets is turned turquoise to indicate that an audio search has
been executed). The intention of this feature is to allow users to
iteratively get closer to a relevant result by starting with general
results from a text query and then narrowing the search space by
having them run audio searches on sounds that are closer to their
intended sound.

5.2 Genetic Mixing
By double-clicking on a retrieved preset, users can collect their
favourite sounds in the "Favourites" list. If desired, users can opt to
create hundreds of new synthesizer sounds by mixing and matching
the parameters of these sounds using the Genetic Mixing Algorithm
(Fig. 3). This is commenced by clicking the "Mix" button. The mixing
process scales quadratically with the number of input presets and
takes approximately a minute to mix 5 presets which results in 100
new sounds. Upon completion, the user is presented with a new
generation of preset sounds which are named numerically. The user
is free to repeat this process any number of times and can navigate
through the various generations that they create using the "Next",
"Prev", and "Clear" buttons where the clear button removes all but
the first generation which is the default bank of preset sounds. For
any generation, users can still complete text and audio searches as
before, enabling them to rapidly find desirable new sounds within
the current generation.

5.3 Preset Modification
Once a user has found a sound, they can opt to modify it with the
preset modification feature (Fig. 4). This feature contains three key
components, the text-search box, the parameter group highlighter
(LEDs in various shades of green), and the example matrix. The
preset modification process starts with the user typing in a query
describing what they are looking to add to their current sound
using the same format of text query recommended in section 5.1
(e.g. "the sound of an echo"). Upon clicking the "Search Parameters"
button, the shade of the parameter group highlighters will deepen
or lighten. The depth of color determines the importance of that
group of parameters with respect to a text query, which helps users
determinewhich parameters should bemodified to achieve a desired
effect. This directs users to the important rows of the example
matrix, where users may click on cells within a row to modify their
original sound. Each row is a radiogroup that is responsible for
configuring a group of parameters that control a specific aspect
of a sound. Each numbered column corresponds to an example
preset which relates to their desired effect while the first column
4For a detailed explanation on the format of the training data, see section 2.3 in [35]

https://u-he.com/products/diva/


SynthScribe

Figure 2: Figure displaying workflow that SynthScribe implements. Starting in the top left (orange), a user can use text to retrieve
relevant synthesizer sounds from a default preset bank. To create completely new sounds, they can generate a completely new
preset bank by using Genetic Mixing (turquoise) to create unique combinations of their favourite sounds from the default
preset bank. Given a sound that is close to their desires, they can send it to the Preset Modification feature (green). Users can
then express their desires for the modification in text and are provided with examples of how they can change the parameters
to achieve a better sound.

labeled "old" contains the users’ initial sound. Users can hear the
example sounds in their entirety by clicking on the cells in the first
row which changes all synthesis parameters. If the user finds a
particular column which certainly contains an example with their
desired effect, they can reset the example matrix with an audio
search for that column (cells of the matrix are turned turquoise
to indicate an audio search has been executed). This audio search
will update the parameter group highlighters and help to highlight
important groups by letting the user get specific with their desires.

5.4 Supporting Features
We implement two additional features that complement the other
available aspects of SynthScribe (Fig. 5). The first is the Oscilloscope
which is used to provide a visual reference for the shape of the wave-
form that the synthesizer is generating. This can provide users with

an intuition for how the Preset Modification feature is changing
their sound. Additionally, we allow the users to scroll through and
modify individual parameters in the Synthesizer Parameters panel.
When clicking on a parameter in the list, the users are presented
with a slider or a set of radio buttons that allow them to modify
continuous or discrete parameters, respectively. Users can also limit
the parameters in this list to only the parameter groups that have
been changed by the Preset Modification feature. This affords the
opportunity for further exploration of synthesis parameters which
have been directed by changes made using Preset Modification.

6 BACKEND IMPLEMENTATION
We built SynthScribe using a combination of Max [1] — a visual
programming language used by musicians to develop bespoke syn-
thesis algorithms with interface development capabilities — and



Brade et al.

Figure 3: Interface for the window where users can search through the default preset bank (visualized in this figure) or presets
generated with the Genetic Mixing feature. Key functionality for the Multimodal Search are highlighted in orange and Genetic
Mixing features are highlighted in turquoise.

Figure 4: Interface for the Preset Modification feature. Users can retrieve examples that are relevant to a desired effect by
first using a text query using the same recommended format as the multimodal search. Examples relating to this text query
are placed in columns of the "Examples" matrix. These examples are labelled numerically and can be refined using an audio
search. The "old" column contains the sound the user wishes to modify. They can change this sound by clicking on cells in
other columns. Each row corresponds to 10 possible changes for a group of parameters and the importance of these groups is
highlighted using the green LEDs to the left of the parameter group names.
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Figure 5: On the left is the Synthesizer parameter display which lets users access low-level synthesis parameters and the default
Diva synthesizer interface. On the right is an Oscilloscope which provides a visualization for the shape of the waveform being
emitted from the synthesizer.

Python. Max is used to host the Diva Synthesizer and to handle
notes played on digital instruments which are sent to the Diva
Synthesizer to be rendered as an audio signal. Python is used to
implement features which require machine learning capabilities
and to provide support when a programming task is difficult to
implement in a language like Max. These Python functions are
executed with inputs from Max by making POST requests to a
Flask [12] API. All of our ML-related features make use of LAION-
CLAP embeddings to connect text and audio. These embeddings
represent the modalities of text and audio in a joint space, thus
allowing for the retrieval of audio with text while also allowing for
direct comparisons to be made between audio samples. We choose
a checkpoint 5 which has been trained first on general audio and
then finetuned on music, allowing users to describe instruments in
addition to other non-musical sounds when searching for presets.
The system is implemented in its entirety on a 2021 Macbook Pro
with an M1 Max chip. Below we describe the functionality of the
key components.

6.1 The Diva Synthesizer
We purchased the Diva Synthesizer by U-he to create a foundation
for our system. We chose this synthesizer as it is relatively popular
and has been used for similar tasks in a relevant prior work [10, 11].
In addition to this, it also has a large amount of preset sounds which
are available for free on the internet. In total, we make use of the
1200 factory preset sounds made by U-he and downloaded 2328 user
preset sounds created by independent musicians on the internet.

6.2 Multimodal Search
To enable text and audio-based preset retrieval, we make use of
LAION-CLAP embeddings. For the existing presets, we record and
embed them ahead of time using a combination of Max and Python.
Each preset is recorded at middle C for 4 seconds with the note
being sustained for the first second of that interval. We choose
middle C due to its location at the centre of typical frequencies
used in music and have the note sustained for a second to get a
5𝑚𝑢𝑠𝑖𝑐_𝑎𝑢𝑑𝑖𝑜𝑠𝑒𝑡_𝑒𝑝𝑜𝑐ℎ_15_𝑒𝑠𝑐_90.14.𝑝𝑡 available at https://github.com/LAION-
AI/CLAP

sense of how the amplitude of the sound changes when a note
is held and then released. For a text search, a Flask API endpoint
handles a POST request from Max containing the text query. This
text query is then embedded and the embedded presets are ranked
with respect to their cosine similarity to the text embedding. This
ranked list is then returned to Max to reconfigure the ordering of
the preset list. If the user wants to execute an audio search, the
embedding for the preset they have selected is retrieved and the
presets most similar to the given preset (including the given preset
itself) are returned to the user.

6.3 Genetic Mixing
The mechanisms for genetic mixing can be described using the lan-
guage of Genetic Algorithms (GA). Initially, the user selects a group
of fit presets to be bred together in order to create a new generation
of fit presets. To create this new generation of individuals, we breed
pairs of preset sounds by having a child randomly inherit whole
groups of parameters from one parent or another. The breeding
mechanism is displayed in Fig. 6. Diva and many other synthesizers
are broken down into panels where each panel contains a group of
parameters to control a specific aspect of the sound. For Diva, we
recognize 13 such groups. In a breeding operation between parent
A and parent B, two children are always created. For a specific
group of parameters, the first child will randomly inherit either
parent As or parent Bs group with equal probability. The second
child will always receive each group that the first child did not
inherit. For each pair of parent presets, we complete 5 breeding
operations resulting in a total of 10 children per pair. This operation
is equivalent to a uniform crossover over the groups of parameters.
Upon creating a new generation of presets, they must be recorded
and embedded to maintain search functionalities. This is achieved
by first using the Python library DawDreamer [3] to record each
preset sound faster than real-time and then using LAION-CLAP to
embed each of these new recordings.

6.4 Preset Modification
The preset modification feature helps users modify an existing
sound to achieve a desirable effect. The interface allows users to

https://github.com/LAION-AI/CLAP
https://github.com/LAION-AI/CLAP
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Figure 6: Demonstration of a uniform crossover between two parent synthesizer sounds. The groups of parameters (Oscillators,
Filters, ..., Effects) are swapped in their entirety to create the children.

Figure 7: A visualization to show how the importance of each parameter group is calculated. This shows how the shade of
green is deepest when the distribution for the parameter is greatly changed as we isolate the synthesizer sounds returned with
respect to some query.

search for and discover useful examples that have that effect and
then highlights which parameter group from that example should
be used to impress that effect on the current sound. The backend
makes the relevant examples available and sets the shades of green
for the parameter group highlighter.

6.4.1 Example Retrieval. Examples are retrieved either by text
queries entered in the text box or by running an audio search
on an example contained in a column of the example matrix. The

examples are retrieved using the same multimodal search func-
tionality as before. Upon executing either search, the parameters
of the examples and of the current sound are saved so that they
can be referenced during on-click interactions with the example
matrix. Upon finishing the search, the top 10 most relecant results
are made available in the numbered columns and the original sound
is accessible under the "old" column.
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6.4.2 Example Matrix Interactions. On-click interactions with the
example matrix result in several parameters on the Diva synthe-
sizer being adjusted simultaneously. When clicks occur in the first
row, the backend sends a string to Max which changes all of the
parameters in the synthesizer to match the selected column in the
example matrix. When clicks occur outside of the first row, the
backend returns a string which changes the parameters of that spe-
cific parameter group to match those of the example selected. Any
clicks in the "old" column always result in the restoration of some
of the parameters of the original sound with all of the parameters
being restored when that click occurs in the first row.

6.4.3 Parameter Group Highlighter Calculation. The parameter
group highlighter indicates the importance of a group of parame-
ters with respect to a query. It provides the foundation for having
the user modify presets because it guides the users’ exploration of
the example matrix. We implement this by treating each parameter
on the synthesizer as a random variable and observing differences
in the distributions of a parameter over the whole preset bank
against an approximate distribution of that parameter for the top
100 presets returned for the user’s query (Fig. 7). If there is a large
difference in these distributions, it shows that this parameter is in
part responsible for the perceptual qualities in the sounds returned
for this query. For example, if the user searches for "the sound
of an arpeggio" it can be expected that the parameters in the top
100 presets for the Arpeggiator will more often be turned on and
modified in a unique configuration than those returned outside of
the top 100. To quantify this difference, we first approximate the
distributions of each parameter on the synthesizer using all 3528
presets. Discrete parameters are left as is while continuous param-
eters (always valued between 0 and 1) are approximated with 10
equidistant regions or bins. Empty bins are handled with additive
smoothing. Most continuous variables have a default value which
are large spikes in probability density at the extremes or precisely
in the middle of a parameter range. To better represent this reality,
we give default values their own narrow bin. At inference time, we
take in a text or audio query from the user and find the top 100
presets using the cosine similarity of LAION-CLAP embeddings.
We then recalculate the distributions for each parameter over these
100 samples using the same bins and additive smoothing as before.
These distributions are then compared using Jensen-Shannon Dis-
tance [23] — a stable and symmetric distance measure between
distributions which ranges between 0 and 1. We proceed to calcu-
late the average distance for the top 20 parameters with the largest
distance in each group. We select the top 20 so that the importance
of large parameter groups is not diluted by the fact that many of
their parameters will be left at default settings. Upon calculating
this average for each group, we assign the parameter group with
the largest average distance to the deepest shade of green and in-
terpolate the colors for other groups on a range between 0 and the
maximum. We choose this colour interpolation strategy to ensure
that the maximum is always obvious.

7 USER EVALUATION
We evaluated our multimodal search and preset modification fea-
tures using two tasks and one participant group by soliciting subjec-
tive ratings that allowed us to quantify their performance. For the

multimodal search, we evaluated LAION-CLAP’s ability to retrieve
synthesizer sounds and used BERT [9] as a strong baseline. For
the preset modification features, we asked participants to listen
to modified sounds suggested by our system which allows us to
evaluate the quality of the modifications and the effectiveness of
the parameter group highlighter simultaneously.

7.1 Participants
We recruited 8 participants in total for the study (Mean age=25.0,
STD=2.9). Participants were not required to have any level of mu-
sical experience. Only two participants actively played an instru-
ment and none had extensive experience using synthesizers. The
study took place across two independent tasks which happened on
different days where each task lasted approximately 30 minutes.
Participants were compensated with a total of 20 CAD.

7.2 Methodology
7.2.1 Task 1: Preset Retrieval Evaluation. Participants were tasked
with rating the relevance of a set of synthesizer sounds with respect
to a text query on a 7-point Likert scale. In total, each participant
was given two text queries and evaluated a total of 10 sounds for
each text query. The text queries were generated before each study
in a quasi-random fashion using an adjective and an instrument
class to describe a sound. An example query could be "The sound
of a harsh brass instrument". The list of possible adjectives was
compiled from relevant research inmusic psychology and keywords
in text labels of synthesizer sounds from commercial sources. The
list of possible instrument classes was sourced only from keywords
used in keyword searches for synthesizers (Both lists are available
in A.1). To make these queries understandable to our participant
class, we avoided instrument classes and adjectives that would be
non-intuitive to people without musical experience. For each query,
we retrieved 5 sounds using LAION-CLAP and 5 sounds using BERT
from the Diva Synthesizer preset bank. LAION-CLAP retrieval
was achieved using the strategy described in subsection 6.2. BERT
retrieval was implemented by extracting adjectives and instrument
classes for each sound in theDiva Synthesizer preset bank usingGUI
automation and OCR. Given these adjectives and instrument classes,
we embedded sentences of the form "The sound of an adjective
instrument class" using BERT. When querying both models, we
used the form "The sound of..." to better fit with the training data
for LAION-CLAP; however, since we used it to create out BERT
embeddings as well this gave LAION-CLAP no undue advantage
for the task. The five sounds were then compiled into a list of 10
in a random order. The participant was then allowed to play each
sound on a musical keyboard and then provided their subjective
evaluation of the sound with respect to a text query.

7.2.2 Task 2: Preset Modification Evaluation. Participants were
tasked with rating the quality of a modification of a synthesizer
sound with respect to an adjective. This process started by having
the user choose an initial sound from the Diva Synthesizer preset
bank which resembled one of the instrument classes in A.1. The
participant was then given their adjective (e.g. harsh) which was
searched for using the text input in the preset modification feature.
Searches were executed using the form "the sound of an adjective
synthesizer" to better represent the training data of LAION-CLAP.
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The user then listened to all of the example columns from the preset
modification feature and selected the column that best fit with their
adjective (e.g. the harshest sound from the examples). An audio
search was then ran on that example which reconfigured the ex-
amples to be the sounds most similar to their chosen column and
also put their chosen column in the "1" position. Participants then
compared their original sound with modifications of that sound for
all thirteen parameter groups, rating the quality of a modification
on a 7-point Likert scale. If their adjective was harsh, a rating of 1
suggested that the modification hadn’t changed anything or had
made the sound less harsh while a rating of 7 corresponded to a
modification that made the sound notably more harsh. The user
repeated this process twice for a total of 26 ratings of modified
sounds.

7.3 Results
7.3.1 Results for Task 1. As shown in Table 1, LAION-CLAP out-
performed BERT with a higher average and median rating. Further
analysis with a Wilcoxon Signed-Rank test showed that this result
is statistically significant (𝑍 = −2.392, 𝑝 < .05).

Model

Performance

LAION-CLAP

BERT

Mean Median IQR

4.45

3.88

4.5

4.0

3.0

2.0

Table 1: The results of the comparative evaluation of LAION-
CLAP and BERT show that LAION-CLAP outperforms BERT.
The results of a Wilcoxon Signed Rank test show that these
results are statistically relevant (𝑍 = −2.392, 𝑝 < .05).

7.3.2 Results for Task 2. The median value of the maximum score
for set of modifications created using the procedure from 7.2.2 is
quite high (Median 6.0, Average 6.0, IQR 0.5). Therefore, the best
modifications suggested by SynthScribe are typically relevant to a
given adjective. We also evaluated the parameter group highlighter
by comparing populations of ratings for possible group modifica-
tions that occurred in the top 5 group modifications recommended
by the highlighter feature and those outside of the top 5. The top
5 modifications were rated better than the lower-rated modifica-
tions with this difference being statistically significant (𝑈 = 6419.0,
𝑝 < .05) after performing a Mann-Whitney U test. Both ratings
are quite low due to the fact that some of the modifications have
little to no effect. This shows that the parameter group highlighter
feature provides some benefit but cannot predict which group of
parameters will give the best modification reliably.

8 FREE USAGE OBSERVATIONWITH
MUSICIANS

8.1 Participants
Our study consisted of 6 musicians who had experience creating
music. Two were professional musicians that make music for a liv-
ing (P2, P5) and the rest were hobbyists who made music for their

Ranking

Performance

Top 5 Modifications

Outside Top 5

Mean Median IQR

2.34

1.87

2.0

1.0

3.0

1.0

Table 2: This table presents the analysis of the Parameter
Group Highlighter, showing a difference in ratings for mod-
ifications in the top 5 and those outside of the top 5. The
results of a Mann-Whitney U test show that the difference
between these groups of ratings is statistically significant
(𝑈 = 6419.0, 𝑝 < .05)

own enjoyment. Both of the professional musicians had received
formal instruction on synthesizers in an academic setting with P2
describing themselves as an expert and P5 an intermediate. The hob-
byists had at most encountered synthesizers when making music
and described themselves as either novices or beginners. All mu-
sicians had at least basic keyboard skills. Each were compensated
with 20 CAD.

8.2 Methodology
The study consisted of a 15-minute demo of SynthScribe followed
by the participant completing at least two independent musical
tasks. The participant was provided with a 61-key keyboard that
they used to play the synthesizer sounds. P2 brought in and was
permitted to use their Akai EWI 5000 6 — a digital wind instru-
ment. The participant was free to select any task that they might
encounter while using a synthesizer for their own purposes. Sug-
gested tasks included finding a desirable synthesizer sound for a
song they knew how to play, replicating a synthesizer sound from
a song, or finding a synthesizer sound that might fit in a score for a
film of a particular genre. When using the system, we requested
that the participant write text queries in the form of "The sound
of a ..." to ensure the best results due to the nature of the train-
ing data for LAION-CLAP. The study concluded with a 15-minute
semi-structured interview followed by a short survey in which we
solicited subjective ratings for ease of use and usefulness in addi-
tion to collecting NASA-TLX [13] ratings for frustration, effort, and
mental demand.

8.3 Results
In Fig. 8 we summarize the subjective ratings of SynthScribe. Our
participants broadly agreed that SynthScribe is easy to use and
useful overall in addition to imparting relatively lowmental demand
and effort while causing little frustration. The overall results of these
studies were positive. P2, a professional musician, mentioned that
"even though like I know a lot about synthesis and can probably get
pretty far with just the DIVA interface, this actually saved me a lot
of time." The other professional musician, P5, mentioned that the
system would be most useful for them when learning to use a new
synthesizer. Participants (P1, P2, P3) also mentioned that they enjoy
the discoverability aspects of the system and described situations
6Akai EWI 5000: https://www.akaipro.com/ewi5000

https://www.akaipro.com/ewi5000
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Statements

This application is easy to use overall

This application was useful overall.

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

It was easy to learn how to use this application to its full extent. 

The search feature for this application was easy to use. 

The search feature for this application was useful. 

It was easy to meaningfully modify synthesizer sounds with this application

This application was useful for meaningfully modifying synthesizer sounds.

It was easy to create lots of new sounds with this application.

This application was useful for creating lots of new sounds.

Median (IQR)

2 (0)

1.5 (1)

1.5 (1)

2 (.75)

2 (.75)

2 (.75)

1.5 (1)

1.5 (1)

1.5 (1)

Strongly DisagreeStrongly Agree 1 2 3 4 5

NASA-TLX

Mental Demand

Effort

1. 

2. 

3. Frustration 

Median (IQR)

2.5 (2.5)

2.5 (2.5)

2 (1.5)

7 - Strongly DisagreeStrongly Agree - 1

Figure 8: Results from the questionnaire, and NASA-TLX ratings (Median and Inter-quartile Range). Note that the first two
were rated with a 5-point Likert scale and NASA-TLX was completed on a 7-point Likert scale.

where they arrived at fitting but surprising new sounds. We also
received invaluable constructive feedback that can inspire future
directions. Below, we further analyze the feedback we received on
each feature.

8.4 Multimodal Search
We observed that some participants use the multimodal search in a
step-wise fashion (P1, P3, P6). First, they ran a text search with a
general description of their idea and then they ran an audio search
on a sound they like. P1, for example, started by searching for the
sound of a piccolo and then narrowed their search by running an
audio search on a sound they liked which led to a recorder sound
that they felt to be most useful. P3 described the advantage of a
general initial text search when they were looking for ambient
sounds: "My goal was very loose and it gave me some things that,
for example, the bass being a candidate for the kind of ambient
sound I want, I wouldn’t have thought of that myself." Participants
sometimes had difficulties with the query format. P4, for example,
thought typing "the sound of ..." every time was "completely irrele-
vant." They also suggested that it might be better to have a pop-up
window containing the results of an audio search to avoid losing
the original content of the initial text search.

8.5 Genetic Mixing
The Genetic Mixing feature was appreciated by participants for
the pleasant but unexpected sounds it created (P1, P2, P3, P4). P4
elaborated on this by saying "I think the mix feature allows you
to kind of have these weird overlaps that you wouldn’t normally
have in a synth and that was really cool." The fact that our mixing
algorithm achieved aesthetically pleasing and surprising results is
bolstered by the reviews of the Multimodal Search due to the fact
that users can search through new generations of sounds using the
same search strategies as before. Some participants expected the
mixes to be slightly more thorough. P2, for example, noted that
they expected the Genetic Mixing to do some level of interpolation
between the continuous parameters in the favorites list instead
of just swapping parameters. P3 mentioned that a useful addition
would be a system that automatically names the new synthesizer
sounds as opposed to the current generic naming convention.

8.6 Preset Modification
The preset modification feature was used by participants to make
quick directed changes. Both professional musicians, P2 and P5,
used this feature to make the final adjustments when attempting to
replicate synthesizer sounds from songs they’d chosen. To this end,
P2 claimed that "even though like I know a lot about synthesis and
can probably get pretty far with just the DIVA interface, this actually
saved me a lot of time. P1 noted that when using synthesizers in
the past "the search space seemed unlimited" but that this feature
provides "a really fast way to just iterate through all of the different
possibilities out there". They also claimed that the parameter group
highlighter was a useful indicator of importance. Other participants
highlight some non-intuitive aspects of this feature. P4 and P6
believed the numerical labeling of the examples corresponded to
an increasing quantity. P3 felt that having to use nouns in the text
queries (e.g. "the sound of a harsh synthesizer") required more
mental effort than just typing an adjective or command (e.g. "more
harsh"). P4 outright stated that they disliked the feature because
it felt like it required them to understand the functionality of the
different parameter groups.

9 DISCUSSION AND FUTUREWORK
9.1 Facilitating Synthesizer Use with

Multimodal Deep Learning
Our quantitative results from section 7 show that LAION-CLAP is
capable of reliably returning relevant synthesizer sounds for the
queries we tested. Although this model is not designed explicitly
to work with synth sounds, these results show that SynthScribe is
built on a solid foundation, allowing researchers to take inspiration
from our approaches when more suitable multimodal models be-
come available. These results also show that users should be able to
find a relevant modification of their sound while using the preset
modification feature due to the fact that the best modifications for a
query are rated quite highly. The parameter group highlighter, how-
ever, does not always direct users to the most useful modifications.
In developing this application, we tested the group highlighter for
situations in which it could create an objectively correct result. For
example, if we want to give the sound an echo searching for "echo"
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should highlight the "Effects" group as most important. It worked
well for these use cases but we believe this is because the "Effects"
parameter group is either on or off and there are lots of examples of
synthesizer sounds with an echo. Over the top 100 samples returned
for the query "echo", it’s likely that the majority of examples would
have the echo turned on, leading to a stark difference between the
top 100 synthesizer sounds and the overall distribution of synthe-
sizer sounds. In situations where a user is looking for a modification
for which there are only a few good examples, it is likely that lots of
the synthesizer sounds returned in the top 100 will not be relevant
to their query, leading to the importance highlighter being diluted
with irrelevant examples.

Our free usage observations provide examples of how and when
these features can be useful to musicians of various experience lev-
els. The multimodal search is shown to provide a useful paradigm
that allows musicians to describe their desires at a high level in
text and then specify their desires further by using an audio search.
With the Genetic Mixing feature, we observe promising interactions
that provide strong anecdotal evidence that new exciting sounds
can be created by mixing those from a favourites list. Users empha-
size their joy in finding something surprising, an observation that
we describe in more detail in the next section. Finally, the preset
modification figure is shown to help people make relevant changes
to their sounds with some musicians emphasizing the time they
could save when using this feature. Underlying these features, we
show that a foundation of multimodal deep learning is useful in the
development of such a system. Given the efficacy of our features,
we are able to develop an interface around an alternative control
modality for synthesizers without having to train a new model or
collect user annotations on the fly.

Below we list some suggestions for future work that may ad-
dress some limitations of SynthScribe. SynthScribe is built on top
of one synthesizer but in practice, musicians interact with many
synthesizers. It would be useful to design a system with similar
features but manages many synthesizers simultaneously. It could
also be useful to tailor a multimodal deep-learning model to syn-
thesizer sounds. This could include training a model on text-audio
pairs including synthesizer jargon or common words that people
use to describe timbres (e.g. dark, bright, mellow, harsh, etc.). It’s
also important to note that people tend to describe sounds with
their own idiosyncrasies which could lend this design problem to
systems that leverage personalization. To highlight which param-
eters are important to make a desirable modification, it could be
useful to collect a larger bank of synthesizer sounds which would
prevent the failure case that we describe above. It could also be use-
ful to calculate importance based on fewer examples which would
prevent unrelated examples from clouding the calculation. Addi-
tionally, relevant prior work has already focused on developing
intuitive sliders for synthesizers [15] but used a synthesizer with
relatively few parameters and required user annotations. Future
work might use the preset modification approach to help the user
isolate a subset of important parameters quickly which could then
be used in tandem with other techniques to provide intuitive sliders
with fewer user annotations and effort.

9.2 Emphasizing Surprise
In our free usage observations, several participants emphasized that
SynthScribe features often returned surprising but relevant results.
Whether it was a sound retrieved with the multimodal search or
encountered via Genetic Mixing or Preset Modification, participants
emphasized their enjoyment of unexpected but pleasant sounds.
Connecting this with our formative study, this could be due to
the fact that finding an unexpected sound is correlated with the
pursuit of originality when creating new music. This result is also
affected by the context of the user study in which a musician is
freely working with a synthesizer. We speculate that it may also be
that musicians want synthesizer sounds to surprise them, sparking
new ideas and creative directions.

To imagine how future work might incorporate this, we would
like to highlight a fictional counter-example. SynthGPT 7 is a
fake system which had a spoof demo video posted on YouTube.
SynthGPT functions by providing musicians with "any sound imag-
inable simply by typing a text description". Given our observations,
we hypothesize that a system like this one would leave much to
be desired. In this creative context, it seems that helping users
find what is imaginable is just as important as helping them dis-
cover the unimaginable. In SynthScribe, we do this with the genetic
mixing feature by getting unexpected but desirable sounds by mix-
ing sounds that musicians have labeled as their favorites. A more
refined approach might attempt to learn what is surprising to a
musician and also what they like, allowing for unimaginable and
desirable sounds to be discovered automatically.

10 CONCLUSION
We implemented a novel system, SynthScribe, which used multi-
modal deep learning as a foundation for several features designed
to facilitate the use of synthesizers for musicians. The results of
our user studies show that our system is capable of helping musi-
cians search for and modify synthesizer sounds effectively while
also affording them the opportunity to create new and surprising
sounds that inspire creativity. We outline that that future work can
aim to tailor multimodal models to the language used to describe
timbres but may also attempt benefit from incorporating aspects
of personalization. We highlight that our participants particularly
enjoyed sounds that they liked but did not expect. We recommend
that future work may also try new methods that predict sounds
that musicians will enjoy but were not explicitly asked for.
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A APPENDIX
A.1 Quantitative User Study Instruments and Adjectives
The list of possible instruments was determined by examining the classifications of sounds included in Analog Lab V 8. The list of possible
adjectives was determined from Analog Lab V, the keywords used in the Diva Synthesizer’s keyword search, and a research paper on
the language used to describe timbre [5]. We narrowed down both lists to examples that we felt would be understood or at least easily
explainable to our participant population for this study which was comprised of mostly non-musicians. This meant not using words that
included synthesizer-specific jargon in the instruments and ignoring adjectives (bright, dark, e.g.) that we believed would be non-intuitive to
our participant population.

Instrument Class Wind Instrument, Electric Piano, Bass, Drum, Brass Instrument, String Instrument, Organ
Adjectives Percussive, Constant, Moving, Clean, Dirty, Soft, Aggressive, Thin, Complex, Funky, Sharp, Simple, Punchy, Huge,

Bizarre, Mellow, Atmospheric, Airy, Evolving, Short, Long, Noisy, Glitchy, Arpeggiated, Distorted, Acoustic, Dull,
Loud, Low, Rough, Smooth, Clear, Rich, Nasal, Full, Hard, Weak, Muffled, Resonant, Large, Quiet, Calm, Harsh,
Shrill, Powerful, Metallic, Ringing, Deep

8https://www.arturia.com/products/software-instruments/analoglab-v/overview

https://www.arturia.com/products/software-instruments/analoglab-v/overview
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A.2 SynthScribe Interface

Figure 9: The whole interface of SynthScribe depicting the layout of the features
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